Low-field (LF) MRI scanners have the power to revolutionize medical imaging by providing a portable and cheaper alternative to high-field MRI scanners. However, such scanners are usually significantly noisier and lower quality than their high-field counterparts. The aim of this paper is to improve the SNR and overall image quality of low-field MRI scans to improve diagnostic capability. To address this issue, we propose a Nested U-Net neural network architecture super-resolution algorithm that outperforms previously suggested deep learning methods with an average PSNR of 78.83 and SSIM of 0.9551. We tested our network on artificial noisy downsampled synthetic data from a major T1 weighted MRI image dataset called the T1-mix dataset. One board-certified radiologist scored 25 images on the Likert scale (1-5) assessing overall image quality, anatomical structure, and diagnostic confidence across our architecture and other published works (SR DenseNet, Generator Block, SRCNN, etc.). We also introduce a new type of loss function called natural log mean squared error (NLMSE). In conclusion, we present a more accurate deep learning method for single image super-resolution applied to synthetic low-field MRI via a Nested U-Net architecture.
translated by 谷歌翻译
Microswimmers can acquire information on the surrounding fluid by sensing mechanical queues. They can then navigate in response to these signals. We analyse this navigation by combining deep reinforcement learning with direct numerical simulations to resolve the hydrodynamics. We study how local and non-local information can be used to train a swimmer to achieve particular swimming tasks in a non-uniform flow field, in particular a zig-zag shear flow. The swimming tasks are (1) learning how to swim in the vorticity direction, (2) the shear-gradient direction, and (3) the shear flow direction. We find that access to lab frame information on the swimmer's instantaneous orientation is all that is required in order to reach the optimal policy for (1,2). However, information on both the translational and rotational velocities seem to be required to achieve (3). Inspired by biological microorganisms we also consider the case where the swimmers sense local information, i.e. surface hydrodynamic forces, together with a signal direction. This might correspond to gravity or, for micro-organisms with light sensors, a light source. In this case, we show that the swimmer can reach a comparable level of performance as a swimmer with access to lab frame variables. We also analyse the role of different swimming modes, i.e. pusher, puller, and neutral swimmers.
translated by 谷歌翻译
Intelligently extracting and linking complex scientific information from unstructured text is a challenging endeavor particularly for those inexperienced with natural language processing. Here, we present a simple sequence-to-sequence approach to joint named entity recognition and relation extraction for complex hierarchical information in scientific text. The approach leverages a pre-trained large language model (LLM), GPT-3, that is fine-tuned on approximately 500 pairs of prompts (inputs) and completions (outputs). Information is extracted either from single sentences or across sentences in abstracts/passages, and the output can be returned as simple English sentences or a more structured format, such as a list of JSON objects. We demonstrate that LLMs trained in this way are capable of accurately extracting useful records of complex scientific knowledge for three representative tasks in materials chemistry: linking dopants with their host materials, cataloging metal-organic frameworks, and general chemistry/phase/morphology/application information extraction. This approach represents a simple, accessible, and highly-flexible route to obtaining large databases of structured knowledge extracted from unstructured text. An online demo is available at http://www.matscholar.com/info-extraction.
translated by 谷歌翻译
Deep neural networks (DNNs) detect patterns in data and have shown versatility and strong performance in many computer vision applications. However, DNNs alone are susceptible to obvious mistakes that violate simple, common sense concepts and are limited in their ability to use explicit knowledge to guide their search and decision making. While overall DNN performance metrics may be good, these obvious errors, coupled with a lack of explainability, have prevented widespread adoption for crucial tasks such as medical image analysis. The purpose of this paper is to introduce SimpleMind, an open-source software framework for Cognitive AI focused on medical image understanding. It allows creation of a knowledge base that describes expected characteristics and relationships between image objects in an intuitive human-readable form. The SimpleMind framework brings thinking to DNNs by: (1) providing methods for reasoning with the knowledge base about image content, such as spatial inferencing and conditional reasoning to check DNN outputs; (2) applying process knowledge, in the form of general-purpose software agents, that are chained together to accomplish image preprocessing, DNN prediction, and result post-processing, and (3) performing automatic co-optimization of all knowledge base parameters to adapt agents to specific problems. SimpleMind enables reasoning on multiple detected objects to ensure consistency, providing cross checking between DNN outputs. This machine reasoning improves the reliability and trustworthiness of DNNs through an interpretable model and explainable decisions. Example applications are provided that demonstrate how SimpleMind supports and improves deep neural networks by embedding them within a Cognitive AI framework.
translated by 谷歌翻译
The NASA Astrophysics Data System (ADS) is an essential tool for researchers that allows them to explore the astronomy and astrophysics scientific literature, but it has yet to exploit recent advances in natural language processing. At ADASS 2021, we introduced astroBERT, a machine learning language model tailored to the text used in astronomy papers in ADS. In this work we: - announce the first public release of the astroBERT language model; - show how astroBERT improves over existing public language models on astrophysics specific tasks; - and detail how ADS plans to harness the unique structure of scientific papers, the citation graph and citation context, to further improve astroBERT.
translated by 谷歌翻译
2型糖尿病(T2DM)的早期诊断对于及时的治疗干预措施和生活方式改变至关重要。随着医学成像数据在许多患者群体中变得更广泛可用,我们试图研究是否可以在表格学习分类器模型中利用图像衍生的表型数据来预测T2DM的发病率,而无需使用侵入性血液实验室测量。我们表明,使用图像衍生表型的神经网络和决策树模型都可以预测患者T2DM状态的召回评分高达87.6%。我们还提出了与“ Syntha1c编码器”相同的结构的新颖使用,这些结构能够输出模仿血液血红蛋白A1C经验实验室测量值的可解释值。最后,我们证明了T2DM风险预测模型对输入矢量成分中小扰动的敏感性可用于预测从以前看不见的患者人群中取样的协变量的性能。
translated by 谷歌翻译
当从人类行为中推断出奖励功能(无论是演示,比较,物理校正或电子停靠点)时,它已证明对人类进行建模作为做出嘈杂的理性选择,并具有“合理性系数”,以捕获多少噪声或熵我们希望看到人类的行为。无论人类反馈的类型或质量如何,许多现有作品都选择修复此系数。但是,在某些情况下,进行演示可能要比回答比较查询要困难得多。在这种情况下,我们应该期望在示范中看到比比较中更多的噪音或次级临时性,并且应该相应地解释反馈。在这项工作中,我们提倡,将每种反馈类型的实际数据中的理性系数扎根,而不是假设默认值,对奖励学习具有重大的积极影响。我们在模拟反馈以及用户研究的实验中测试了这一点。我们发现,从单一反馈类型中学习时,高估人类理性可能会对奖励准确性和遗憾产生可怕的影响。此外,我们发现合理性层面会影响每种反馈类型的信息性:令人惊讶的是,示威并不总是最有用的信息 - 当人类的行为非常卑鄙时,即使在合理性水平相同的情况下,比较实际上就变得更加有用。 。此外,当机器人确定要要求的反馈类型时,它可以通过准确建模每种类型的理性水平来获得很大的优势。最终,我们的结果强调了关注假定理性级别的重要性,不仅是在从单个反馈类型中学习时,尤其是当代理商从多种反馈类型中学习时,尤其是在学习时。
translated by 谷歌翻译
从演示中学习(LFD)是一种从人提供的演示中复制和概括机器人技能的流行方法。在本文中,我们提出了一种基于优化的新型LFD方法,该方法将演示描述为弹性图。弹性图是通过弹簧网格连接的节点的图。我们通过将弹性地图拟合到一组演示中来构建技能模型。我们方法中的公式优化问题包括三个具有自然和物理解释的目标。主术语奖励笛卡尔坐标中的平方误差。第二项惩罚了导致最佳轨迹总长度的点的非等应存在分布。第三学期奖励平滑度,同时惩罚非线性。这些二次目标形成了凸问题,可以通过局部优化器有效地解决。我们研究了九种用于构建和加权弹性图并研究其在机器人任务中的性能的方法。我们还使用UR5E操纵器组在几个模拟和现实世界中评估了所提出的方法,并将其与其他LFD方法进行比较,以证明其在各种指标中的好处和灵活性。
translated by 谷歌翻译
鉴于HEP研究的核心,数据科学(DS)和机器学习(ML)在高能量物理学(HEP)中的作用增长良好和相关。此外,利用物理数据固有的对称性激发了物理信息的ML作为计算机科学研究的充满活力的子场。 HEP研究人员从广泛使用的材料中受益匪浅,可用于教育,培训和劳动力开发。他们还为这些材料做出了贡献,并为DS/ML相关的字段提供软件。物理部门越来越多地在DS,ML和物理学的交集上提供课程,通常使用HEP研究人员开发的课程,并涉及HEP中使用的开放软件和数据。在这份白皮书中,我们探讨了HEP研究与DS/ML教育之间的协同作用,讨论了此交叉路口的机会和挑战,并提出了将是互惠互利的社区活动。
translated by 谷歌翻译
开发对手挑战NLP系统的方法是提高模型性能和解释性的有前途的途径。在这里,我们描述了团队在第一个动态对抗数据收集(DADC)的任务1中“长角牛”的方法,该研讨会要求团队手动欺骗一个模型,以挖掘出挖掘的问题回答任务。我们的团队首先结束,模型错误率为62%。我们主张采用系统的,语言知情的方法来制定对抗性问题,并描述了试点实验的结果以及我们的官方提交。
translated by 谷歌翻译